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Abstract. We consider the one-dimensional gas of electrons interacting via an attractive δ-
function potential. The attractive potential leads to the formation of Cooper-pair-like bound states
with a spin gap. Without destroying the integrability, we introduce a finite concentration of mixed-
valence impurities with two magnetic configurations of spin S and S + 1/2, which hybridize with
the conduction states of the host. We derive the Bethe ansatz equations diagonalizing the system
for the correlated host with impurities and discuss the ground-state properties as functions of the
concentration of impurities and the Kondo coupling. For a sufficiently large density of electrons the
spin gap is reduced by the impurities and is closed at a critical concentration which depends on the
impurity spin and the coupling strength. A ferromagnetic phase of unpaired spin-polarized itinerant
electrons is induced for impurity concentrations larger than the critical one. The critical behaviour
of the correlation functions is studied in the gapped and gapless regions using the mesoscopic
energy spectrum and conformal field theory.

1. Introduction

Magnetic impurities in superconductors are unfavourable to the formation of Cooper pairs, and
the superconducting gap and the transition temperature gradually reduce as the concentration of
impurities increases [1,2]. The gap closes before superconductivity is completely suppressed,
which leads to a phenomenon known as gapless superconductivity [2]. As a consequence of
the broken time-reversal symmetry, the impurity forms a bound state inside the gap, which
also contributes to the closing of the superconducting gap [3].

A possible explanation for the pseudo-gap or spin-gap anomaly observed in underdoped
cuprate superconductors is that they are in an intermediate regime between a BCS super-
conductor and a condensate of preformed bosons. The one-dimensional (1D) gas of electrons
with an attractive δ-function potential [4] or the Hubbard model with attractive U [5, 6]
exhibit such preformed Cooper pairs without long-range order at all temperatures. For a
sufficiently large density of electrons the magnetic impurities weaken the Cooper pairs and,
hence, reduce the spin gap (bound-state energy) [7], which eventually closes, as a function of
the concentration of impurities. This is in contrast to the suppression of superconductivity in a
BCS superconductor by magnetic impurities via the pair-breaking mechanism [1–3]. Within
our model, preformed pairs are only broken up if the impurity concentration is larger than a
critical one, ccr , at which the spin gap is closed. In this case the magnetic impurities act like an
effective magnetic field and yield a phase in which the unpaired electrons have a spontaneous
magnetization (ferromagnetism) in the gapless region.
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The exact solution for the 1D electron gas with δ-function interaction was obtained long
ago [8] via nested Bethe ansätze, and numerous properties are known for both repulsive and
attractive interaction U [9]. An impurity embedded into the electron gas usually destroys the
integrability. In recent papers we succeeded in constructing 1D integrable correlated electron
gas models with magnetic impurity via the quantum inverse scattering method [10–14]. (Other
models of isolated impurities in correlated electron hosts have been studied in references [15].)
The advantage of the quantum inverse scattering method is that an integrable model and its
Bethe ansatz solution can be constructed from a consistent set of scattering matrices satisfying
the triangular Yang–Baxter relation. This procedure avoids the tedious coordinate Bethe
ansatz and the a priori search of an integrable Hamiltonian. The condition of integrability
imposes restrictions on the impurity, since all scattering matrices have to satisfy the triangular
Yang–Baxter relation among themselves. In particular, for the Hubbard model with attractive
interaction, a mixed-valence hybridization impurity with two magnetic configurations (the
undercompensated Kondo effect) was found to be integrable [14]. We will consider the same
type of impurity embedded into the electron gas with a parabolic band. Without losing the
integrability, this model is then generalized to a finite concentration of impurities.

The rest of the paper is organized as follows. In section 2 we present the main steps that
lead to the integrable model and derive the Bethe ansatz equations diagonalizing the system.
The restrictions imposed on the scattering matrices by the condition of integrability suppress
the reflection. As a consequence, the impurity does not form a bound state inside the spin gap,
which is an artifact of our impurity model and a non-generic property. In section 3 we discuss
the ground-state properties as functions of the concentration of impurities and the coupling
strength. The system displays two phases: (i) the spin-gapped phase, which is described
in terms of one Fermi sea of hard-core bosons corresponding to the Cooper-pair-like singlet
bound states; and (ii) the gapless phase described in terms of two Dirac seas, one for the
singlet pairs and the other one representing unpaired spin-polarized electrons. The finite-size
corrections to the ground-state energy and the matrix of dressed charges are derived in section 4
for both phases. In section 5 we study the critical behaviour of correlation functions at large
distances and long times across the critical point separating the gapless ferromagnetic and the
spin-gapped phases. The correlation functions considered are the pair-charge-density Green’s
function, the Cooper-pair correlation function, and the spin-density and spin-flip response
functions. The Aharonov–Bohm persistent-current oscillation pattern is also discussed. The
critical behaviour and the oscillations are qualitatively different for the two phases. Conclusions
follow in section 6.

2. Bethe ansatz equations

2.1. Model and scattering matrices

As the host we consider the 1D electron gas with a parabolic band and the electrons interacting
via an attractive contact interaction:

Hhost =
∑

σ

∫
dx ψ†

σ (x)(−∂2/∂x2)ψσ (x)

− 2U

∫
dx

∫
dx ′ δ(x − x ′)ψ†

↑(x)ψ
†
↓(x ′)ψ↓(x ′)ψ↑(x) (1)

where ψ†
σ (x) creates an electron of spin σ at x, the mass has been equated to 1/2 and U is the

interaction strength. If we consider only two electrons at x1 and x2 the wave function in the
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sectors x1 > x2 and x1 < x2 is related by the scattering matrix for two electrons [8, 9]:

X̂(k1 − k2) = (k1 − k2)Î − iUP̂

(k1 − k2) − iU
(2)

where

Î = δσ1σ
′
1
δσ2σ

′
2

and P̂ = δσ ′
1σ2δσ ′

2σ1

are the identity and permutation operators, respectively. Here the unprimed (primed) indices
refer to states before (after) scattering and the ki are the wavenumbers of the plane waves. The
sets of wavenumbers of the incoming and outgoing particles are identical. We consider an
attractive interaction, i.e. U > 0.

The impurity is introduced via its matrix describing the scattering with the itinerant
electrons Ŝ:

Ŝσσ ′
MM ′(k − k0) = δσσ ′δMM ′ − (Mσ |M + σ)(M ′σ ′|M ′ + σ ′)

iU(2S + 1)

k − k0 + iU(2S + 1)/2
P σσ ′

MM ′ (3)

where

P σσ ′
MM ′ = δσσ ′δMM ′ + δ−σσ ′δM ′M+2σ .

Here M and M ′ are the spin projections of the impurity before and after scattering, respectively.
The Clebsch–Gordan coefficient (Mσ |M + σ) which is a shorthand notation for

(SM; 1
2σ |S 1

2 (S + 1
2 )(M + σ)) (4)

selects the way in which the impurity couples to the itinerant electrons and preserves the
SU(2) invariance of the spin space. The impurity of spin S is capable of temporarily absorbing
the spin 1

2 of the conduction electrons to form an effective spin (S + 1
2 ), i.e. it exists in two

different spin configurations. Two Clebsch–Gordan coefficients are needed, the first one to
absorb the electron and the second one to release the electron again. This is characteristic of
intermediate-valence systems, where actual states are the linear superpositions of two electronic
configurations [16–18]. In equation (2) the parameter k0 is the impurity rapidity which controls
the degree of ‘valence admixture’. Note that equations (2) and (3) are both unitary.

The necessary and sufficient condition for the integrability is the factorization of the many-
particle scattering matrix into two-particle scattering matrices, i.e. the scattering matrices
satisfy the triangular Yang–Baxter relation [10]:

X
σ1σ

′
1

σ2σ
′
2
(k1 − k2)Y

σ ′
1σ

′′
1

MM ′ (k1 − k3)Y
σ ′

2σ
′′
2

M ′M ′′(k2 − k3)

= Y
σ2σ

′
2

MM ′(k2 − k3)Y
σ1σ

′
1

M ′M ′′(k1 − k3)X
σ ′

1σ
′′
1

σ ′
2σ

′′
2
(k1 − k2) (5)

where the sum over repeated indices is implicit. Here Ŷ is either the matrix X̂ for scattering
of itinerant electrons or the matrix Ŝ for scattering of a conduction electron and the impurity.
If Ŷ ≡ X̂ the spin components M , M ′ and M ′′ are identical to σ3, σ ′

3 and σ ′′
3 . On the other

hand, if Ŷ ≡ Ŝ the rapidity k3 is just k0. The tedious but straightforward verification that
the scattering matrices (2) and (3) satisfy the relations (5) has been explicitly carried out in
references [16–18].

Consider now Ne itinerant electrons and Ni impurities in a box of length L with periodic
boundary conditions. Periodic boundary conditions imposed on a given electron means that
it has to interchange position with all other electrons and all the impurities to arrive again at
its original position. Each shifting through (permutation) involves a two-particle scattering
matrix, such that when the particle is back at the original position we have obtained an operator
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that consists of a product of (Ne −1) electron–electron scattering matrices, X̂, and Ni impurity
scattering matrices, Ŝ, i.e.

T̂j (kj ) = Ŷ−1
j,j+1(kj − kj+1) · · · Ŷ−1

j,N (kj − kN)Ŷ−1
j,1 (kj − k1) · · · Ŷ−1

j,j−1(kj − kj−1) (6)

where Ŷ denotes either an electron–electron or an impurity scattering matrix. Here kj is the
wavenumber of the j th electron, and kl ≡ k0 if Ŷj,l is an electron–impurity scattering matrix.
There are Ne such transfer matrices, one for each electron, which have to be diagonalized
simultaneously. The periodic boundary conditions for each electron determine the eigenvalue
of T̂j (kj ) to be exp(ikjL).

2.2. Diagonalization

The monodromy matrix [10,18,19] for Ne itinerant electrons and Ni impurities, N = Ne +Ni ,
is defined as

L
{σ ′

1···σ ′
N }τ ′

{σ1···σN }τ (α; α1, . . . , αN) = Y
τ ′µ1

σ ′
1σ1

(α1 − α)Y
µ1µ2

σ ′
2σ2

(α2 − α) · · · YµN−1τ

σ ′
N σN

(αN − α) (7)

with the implicit summation over all of the µj -indices. Here Ŷ denotes a scattering matrix and
α is the spectral parameter. Equation (7) consists of a product of Ne scattering matrices of the
X̂ type and Ni electron–impurity scattering matrices, which can be arranged in any arbitrary
order. The indices σi generically denote electron or impurity spins. With respect to the indices
τ and τ ′ the monodromy matrix forms a 2 × 2 matrix, which we write as L̂τ ′

τ (α) omitting the
spin indices and the parameters αj .

From the Yang–Baxter relations it follows that the monodromy matrix satisfies the identity
[10, 18, 19]

X
τ1τ

′
1

τ2τ
′
2
(α − α′)L̂τ ′

1
τ3(α

′)L̂τ ′
2

τ ′
3
(α) = L̂

τ2

τ ′
2
(α)L̂

τ1

τ ′
1
(α′)Xτ ′

1τ3

τ ′
2τ

′
3
(α − α′) (8)

where the sum over repeated indices is implicit. A transfer matrix is defined as T̂ (α) =∑
τ L̂τ

τ (α). Using equation (8) and the unitarity of X̂(α), it is straightforward to show that
transfer matrices at different α-values commute, [T̂ (α), T̂ (α′)] = 0, which means that they
can all be diagonalized simultaneously. The diagonalization yields the discrete Bethe ansatz
equations discussed below. Note that these commutation relations also hold if not all impurities
have the same rapidity k0, i.e. it holds for any distribution of k0. With α = kj , j = 1, . . . , Ne,
and αl = kl being either k0 or an electron rapidity (Ni of the former and (Ne − 1) of the latter
kind), equations (6) are just the trace over the monodromy matrix, which as shown above can
be diagonalized simultaneously for all spectral parameters.

To derive the Bethe ansatz equations we follow the standard procedure outlined elsewhere
[19]. The four components of the monodromy matrix with respect to the indices τ and τ ′ are
denoted by

L̂1
1 = Â L̂1

2 = B̂ L̂2
1 = Ĉ L̂2

2 = D̂ (9)

so the diagonalization of T̂ (α) corresponds to diagonalizing Â(α) + D̂(α). The operators Â,
B̂, Ĉ and D̂ obey commutation relations which are obtained from equation (8) by explicitly
using the two-electron scattering matrix, (2). The results are similar to those derived in
references [18, 19] and will not be repeated here. We denote with )0 the state of maximum
spin (usually called the vacuum state), i.e., the state in which all electron and impurity spins
point upward, M = S. The Ĉ-operator acts like a ‘spin-raising’ operator and when applied to
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)0 it yields zero. The diagonal operators satisfy

Â(α))0 = *A(α))0 D̂(α))0 = *D(α))0

*A(α) =
[

k0 − α − iU(2S + 1)/2

k0 − α + iU(2S + 1)/2

]Ni

*D(α) =
[

k0 − α + iU(2S − 1)/2

k0 − α + iU(2S + 1)/2

]Ni Ne∏
j=1

αj − α

αj − α − iU
.

(10)

On the other hand, B̂ has the properties of a ‘spin-lowering’ operator, so the vector

)(α′
1, . . . , α′

M∗) =
M∗∏
β=1

B̂(α′
β))0 (11)

corresponds to M∗ flipped spins and has a spin projection equal to 1
2Ne − M∗ + NiS.

The Bethe ansatz equations are the conditions on the set of parameters α′
1, . . . , α′

M∗

under which the vector (11) is an eigenvector of Â(α) + D̂(α). Applying Â(α) + D̂(α) to
)(α′

1, . . . , α′
M∗) and commuting (Â + D̂) through all the B̂-operators, one obtains two types

of term, namely (i) terms that reproduce the vector (11) and (ii) ‘unwanted’ terms of the form

M∗∑
γ=1

*γ (α, {α′
β})

M∗∏
β=1,β �=γ

B̂(α′
β)B̂(α))0. (12)

Hence, the vector (11) is an eigenvector of (Â + D̂) only if *γ (α, {α′
β}) = 0 for each γ .

The actual expression for *γ (α, {α′
β}) and the eigenvalue of (Â + D̂), i.e. the amplitude

multiplying the term of type (i) that reproduces the vector (11), are obtained by making use of
the commutation relations of the operators (9). With αl = kl for l = 1, . . . , Ne, α = kj , and
setting α′

β = *β − iU/2, we obtain the discrete Bethe ansatz equations for the electron gas
with Ni impurities[

kj − k0 − i(2S + 1)U/2

kj − k0 + i(2S + 1)U/2

]Ni

eikj L =
M∗∏
β=1

kj − *β − iU/2

kj − *β + iU/2
j = 1, . . . , Ne (13)

[
*α − k0 − iUS

*α − k0 + iUS

]Ni Ne∏
j=1

*α − kj − iU/2

*α − kj + iU/2
= −

M∗∏
β=1

*α − *β − iU

*α − *β + iU
β = 1, . . . , M∗.

(14)

In each equation the first factor on the left-hand side arises from the impurities. The remaining
factors correspond to the electron gas host. The energy of the system is given by E = ∑Ne

j=1 k2
j .

2.3. Impurity Hamiltonian

Each impurity acts like a localized charged particle of spin S. For simplicity we first consider
an isolated impurity. The Hamiltonian describing the interaction of the impurity with a lattice
electron gas can in principle be obtained as the derivative of the logarithm of the transfer matrix
with respect to the spectral parameter α at α = 0. In general, the impurity then interacts with
the conduction electrons in both partial waves (right and left movers).

The impurity Hamiltonian has a more appealing form if the kinetic energy is linearized
in the momentum about the Fermi level. The interaction of the impurity with conduction
states then becomes a contact potential, so the impurity only couples to states with even parity
(s waves) with respect to the impurity site. States with odd parity affect the impurity only
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indirectly via the Luttinger liquid. The impurity corresponds to a mixed-valence impurity
with two magnetic configurations of spins S and S ′ = S + 1

2 , respectively, hybridized via a
conduction electron [16–18]:

Himp = ε
∑
M ′

|S ′M ′〉〈S ′M ′| + V
∑

σMM ′
(SM, 1

2σ |S 1
2S ′M ′)

×
∫

dx δ(x)[c†
σ (x)|SM〉〈S ′M ′| + H.c.] (15)

where the bra and ket denote the impurity states of the two configurations, and the Clebsch–
Gordan coefficient selects the spin components. The completeness condition for the impurity
requires ∑

M ′
|S ′M ′〉〈S ′M ′| +

∑
M

|SM〉〈SM| = 1. (16)

Here ε = |k0|/v represents the energy difference between the two configurations relative to
the Fermi level, v is the Fermi velocity and V 2 = (2S + 1)U/v. The impurity is capable of
temporarily absorbing the spin of one conduction electron to form an effective spin S ′ = S + 1

2 ,
i.e. the wave function is a linear superposition of two different spin configurations [16–18].
Note that for S = 0 the Clebsch–Gordan coefficients are equal to 1 and the impurity is the
U → ∞ limit of the Anderson model, except that the host is now a Luttinger liquid.

While in a free-electron host the Anderson impurity has two independent parameters,
namely ε and V , the integrability in the interacting host fixes V , so there is only one free
parameter, namely the impurity rapidity k0. In contrast, for an impurity in a free-electron gas
the charge and spin fluctuations occur on different energy scales. |k0| is inversely proportional
to the Kondo exchange coupling.

In view of the triangular relation, the Bethe ansatz equations and the energy of the system
only depend on U , the number of itinerant electrons Ne, the number of impurities Ni , the
impurity rapidity k0 and the length of the box L, but not on the space order, i.e. the relative
distances between the impurities. This leads to a locality structure, i.e. a large degeneracy of
systems having the same energy. This property is the consequence of the integrability and is
non-generic, but deviations from the integrability are expected to modify the locality property
into a quasi-locality structure, similar to the one experimentally observed for heavy-fermion
alloys. This locality structure has previously been discussed for other models [20, 21]. Note
also that we have not incorporated additional interactions between impurities, so for the present
model the impurities are non-interacting.

3. Ground-state properties

3.1. Integral equations

States of the model are given by solutions of the Bethe ansatz equations. It follows that in
the ground state the *-rapidities are all real, while the k-rapidities are either real (unpaired
electrons) or coupled to the *-rapidities in 2-strings, k = * ± iU/2 (paired electrons). The
impurities do not introduce a new class of solutions.

The attractive interaction pairs the electrons into Cooper-like singlet states without off-
diagonal long-range order even at T = 0 [4–6]. The singlet pairs act like hard-core bosons
and are characterized by the set of real *-rapidities (2-strings of k-rapidities). The singlet
pairs introduce a spin gap (binding energy) in the excitation spectrum of unpaired electrons,
which are represented by the real rapidities k. They correspond to unbound spin-polarized
electrons. The distribution densities for the rapidities and their holes, i.e. ρ(k) and ρh(k)
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for the unbound electrons, and σ ′(*) and σ ′
h(*) for the pair rapidities, satisfy the following

integral equations [4, 9]:

ρh(k) + ρ(k) +
∫ Q

−Q

d* a1(k − *)σ ′(*) = 1

2π
+

1

2
c[a2S+1(k − k0) + a2S+1(k + k0)] (17)

σ ′
h(*) + σ ′(*) +

∫ Q

−Q

d*′ a2(* − *′)σ ′(*′)

= −
∫ B

−B

dk a1(* − k)ρ(k) +
1

π
+

1

2
c[a2S+2(* − k0) + a2S+2(* + k0)] (18)

where c = Ni/L is the density of impurities and

an(x) = (Un/2π)/(x2 + (Un/2)2)].

Equations (17) and (18) follow from the discrete Bethe ansatz equations. The driving terms
proportional to c arise from the impurities, while the remaining ones are due to the electron
gas. The sign of k0 introduces a forward or backward chirality. We consider here a system
without net chirality, i.e. with as many impurities with backward as with forward chirality.
This is not a unique choice, but any distribution of signs of k0 gives qualitatively the same
answer. Note that the system is integrable for any distribution of k0.

The total number of electrons and the magnetization are given by

Ne

L
= n =

∫ B

−B

dk ρ(k) + 2
∫ Q

−Q

d* σ ′(*)

Sz

L
= Sc +

1

2

∫ B

−B

dk ρ(k).

(19)

The number of electrons and the magnetization of the host determine the integration limits Q

and B. Q and B monotonically increase with the filling of the respective bands.
Equations (17) and (18) are linear in the densities, and the driving terms of host and

impurities are additive, so the contributions to the densities for the host and the impurities can
be separated: ρ(k) = ρhost (k) + cρimp(k) and σ ′(*) = σ ′

host (*) + cσ ′
imp(*). It is useful to

introduce the ratios of the densities for the isolated impurity and the pure host, obtained by
solving equations (17) and (18):

Rρ = ρimp(k)

ρhost (k)
Rσ ′ = σ ′

imp(*)

σ ′
host (*)

(20)

in terms of which the dressed energies are given by [4]

ε(k) =
(

k2 − µ − 1

2
H

) [
1 + cRρ

] −
∫ Q

−Q

d* a1(* − k)ψ(*) (21)

ψ(*) = 2(*2 − U 2/4 − µ)[1 + cRσ ′ ] −
∫ Q

−Q

d*′ a2(* − *′)ψ(*′)

−
∫ B

−B

dk a1(* − k)ε(k). (22)

The dressed energies enter the Fermi function, i.e. states with negative (positive) energy are
occupied (empty). The Fermi points are given by the zeros of the dressed energies, ε(±B) = 0
and ψ(±Q) = 0, and determine in this way the magnetic field and the chemical potential for
given number of electrons and magnetization. The integrations in equations (17), (18), (21)
and (22) are over occupied states, i.e. the intervals in which ε and ψ are negative.
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The spin gap is half the smallest energy required to depair a singlet bound state and in
zero magnetic field it is

Gap = −µ
[
1 + cRρ(0)

] −
∫ Q

−Q

d* a1(*)ψ(*) (23)

where ψ is the solution of equation (22) for B = 0.

3.2. Properties

The impurities manifest charge fluctuations characteristic of intermediate valence [14]. This
is in part a consequence of the correlations in the host, which drive the valence of the
impurities. The valence is maximum if the impurity rapidity k0 lies in the continuum of the
pair-charge rapidities (in resonance with the Fermi sea states), and decreases monotonically
with increasing U .

Since the impurities contribute with a fraction of an electron (intermediate valence), the
total number of electrons changes with the impurity concentration c if the integration limits B

and Q are kept constant. Hence, the distributions of rapidities for the host and the impurity do
not change as a function of c. Similarly, one could consider the system at a fixed number of
electrons and readjust Q and B with c. Numerically, we found this effect to be small within
the range of concentrations used here.

The spin fluctuations are suppressed by the spin gap of the host. There is no response
to a magnetic field smaller than the critical field Hc (corresponding to the depairing energy
of Cooper-singlet bound states or the gap) and the magnetization of the impurities equals S.
For fields slightly larger than Hc, the magnetic susceptibility of the impurity has a square-root
divergence [14], revealing the van Hove singularity of the empty unpaired electron band of the
host. This behaviour differs drastically from the ordinary Kondo effect.

Usually a magnetic impurity introduces a bound state inside the gap of a BCS super-
conductor. The spin gap represents (half of ) the energy gained by forming a Cooper bound
state, although without long-range order. The impurities considered here are only elastic
scatterers (as required by the integrability), and hence they do not form a bound state. An
impurity that includes both elastic scattering and reflection would give rise to a bound state
in the spin gap. This aspect of our impurity is non-generic, imposed by the condition of
integrability. We expect, however, some other properties of the impurity, e.g. the lack of spin
screening (a consequence of the spin gap) and the pair weakening (because they are preformed
pairs), to be valid more generally.

Consider first equations (21) and (22) in the limits Q → 0 and B → 0. Then µ = −U 2/4
and the gap is given by (U 2/4)(1 +cRρ(0)). Hence, for a very low density of electrons the gap
increases with c. The magnitude of the gap decreases with the density of electrons, n = Ne/L,
indicating that the Cooper pairs become more weakly bound as n increases. The rate of change
of the gap with the concentration of impurities also changes with n as shown in figure 1, and
becomes negative for sufficiently large n. Since we are interested in the closing of the gap, we
will consider this latter situation.

The integral equations (17), (18), (21) and (22) were solved numerically for a fixed number
of host electrons (n = 0.68) and zero magnetic field. The dressed energies are shown in figure 2
as functions of the rapidities for three impurity concentrations, k0 = 1.0 and S = 0. This
corresponds to Anderson impurities of a spin S ′ = 1/2. The dressed energy for the Cooper
pairs ψ increases with c in the relevant regime of occupied states, but does not display any
qualitative changes. The dressed energy ε, representing the unpaired spin-polarized electrons,
on the other hand, decreases with c in the neighbourhood of k ≈ 0. For c = ccr , the critical
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Figure 1. Rate of change of the spin gap with the concentration of impurities as a function of the
density of electrons for several values of the impurity rapidity k0, S′ = 1/2 and U = 1. Note that
for small n the gap increases with c as a consequence of the renormalization of the density of states,
while for large n there is pair weakening.

Figure 2. (A) Dressed energy ψ for the singlet pairs as a function of the rapidity * and (B) the
dressed energy ε for the unpaired electrons as a function of k for U = 1, S = 0 (S′ = 1/2),
k0 = 1.0 and Q = 0.716. Three impurity concentrations are shown: (a) c = 0, (b) c = ccr = 0.1,
and (c) c = 0.2. Note that ε is negative for c > ccr and small k.

concentration, we have ε(0) = 0. Hence, for c < ccr the energy is always positive and the
states are unoccupied. In this case the value of ε(0) represents the gap, i.e. the energy required
to place one additional electron into the unpaired electron band. In order to break up a pair an
energy of at least 2ε(0) is needed. For c > ccr the unpaired electron band is partially filled
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and gives rise to a spontaneous magnetization of the itinerant electrons (ferromagnetism). In
this sense the effect of the impurities is similar to that of an external magnetic field.

The magnitude of the spin gap and the spontaneous magnetization as a function of impurity
concentration are shown in figure 3(A) for S = 0, U = 1 and impurity rapidity k0 = 1.0.
The spin gap decreases linearly with c. If the equations are solved for a constant number
of electrons (here fixed at n = 0.68 per site), there are small deviations from linearity in c,
requiring an adjustment of Q for each concentration. The spin gap closes at ccr , the critical
concentration. The spin gap is reduced via pair weakening, rather than by pair breaking as
for magnetic impurities in a BCS superconductor. No unpaired electrons are generated as
long as there is a spin gap. The ground-state impurity magnetization for c < ccr is NiS. For
impurity concentrations larger than ccr a fraction of the itinerant electrons are depaired and
spontaneously magnetized. For c slightly above ccr the total magnetization of the electron gas
with impurities is Sz/L = cS + α(c − ccr )

1/2, where α is a constant (see figure 3(A)).

Figure 3. (A) Spin gap and spontaneous magnetization of the unpaired itinerant electrons (per site)
and (B) group velocities, vp for the Cooper pairs and vu for the unpaired electrons, as functions of
the impurity concentration. The model parameters are U = 1, S = 0 (S′ = 1/2), Q = 0.716 and
k0 = 1.0. The spin gap closes at ccr , while Sz and vu are only non-trivial for c > ccr .

The group velocities of the two classes of particles are given by

vp = (∂ψ/∂*)Q

2πσ ′(Q)
vu = (∂ε/∂k)B

2πρ(B)
(24)

and are displayed in figure 3(B) as functions of c. Note that vu is not defined for c < ccr and
increases proportional to

√
c − ccr for c slightly above ccr , and vp has a small discontinuity in

its slope at ccr .
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4. Finite-size corrections

The finite size of a ring manifests itself in several ways:

(i) Impurities are important in mesoscopic systems, since their contribution to extensive
quantities can become large and observable, and may even change the properties.

(ii) The finite length of a ring yields persistent currents with oscillation periods given by
interference patterns of the Aharonov–Bohm type.

(iii) Finite-size corrections to the energy determine the critical exponents of the asymptotic
dependence at long times and large distances of correlation functions via conformal field
theory [22–26].

To calculate the finite-size corrections to the ground-state energy, i.e. the change of the
energy due to the finite length of the ring, we follow the procedure developed in references [22]
and [27]. The ground-state energy including mesoscopic terms is given by

E = Lε∞ +
∑

l

πvl

2L




[∑
q

(ẑ−1)ql>Nq

]2

− 1

3




+
∑

l

2πvl

L




[∑
q

zlq(Dq + ϑq)

]2

+ n+
l + n−

l


 (25)

where ε∞ is the ground-state energy density in the thermodynamic limit, l and q label the
two bands and take values p and u, and vl denote the group velocities of the two bands. The
quantities ϑq are phase shifts of the Aharonov–Bohm type, induced by the magnetic field flux
through the ring.

The mesoscopic energy depends on several quantum numbers. >Nq is the departure of the
number of particles in the band q from the equilibrium value. Dq is the backward-scattering
quantum number, i.e. 2Dq represents the difference of forward- and backward-moving states
from the equilibrium value (backward scattering). These quantities are sensitive to the parity
in each set of rapidities. Finally, n±

q define the low-lying particle–hole excitations about each
of the Fermi points. Here >Nq , n±

q and 2Dq always take integer values; hence Dq can either
be an integer or half-integer depending on the initial conditions.

The quantities zlq in equation (25) are the dressed generalized charges of the excitations
at the Fermi points, zuq = ξu,q(B) and zpq = ξp,q(Q). The dressed charges are determined
by the integral equations [27]

ξu,q(k) +
∫ Q

−Q

d* a1(* − k)ξp,q(*) = δu,q

ξp,q(*) +
∫ Q

−Q

d*′ a2(* − *′)ξp,q(*
′) +

∫ B

−B

dk a1(* − k)ξu,q(k) = δp,q .

(26)

In equation (25) ẑ−1 denotes the inverse of the matrix of dressed generalized charges. The
dressed charges describe the interplay of the different Fermi points when particles are added
or removed.

The integral equations (26) depend on c, S and k0 only through the integration limits B

and Q. We solved equations (26) numerically for S ′ = 1/2 (S = 0), zero magnetic field,
n = 0.5, U = 1 and k0 = 0.5. For c < ccr only the band of Cooper pairs is filled and, hence,
only zpp is defined. The dressed generalized charges are shown in figure 4(A) as functions of
c. From (26) it is clear that zuu and zpp are always positive, while zpu and zup are negative.
zpp(c) has a discontinuity in its slope at ccr , zpu vanishes at ccr and zuu = 1 at this point.
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Figure 4. (A) Dressed generalized charges, (B) critical exponents for the pair-charge-density
correlation function and (C) leading critical exponents of the Cooper-pair correlation function, ωc ,
and the spin-flip response function, ωs , as functions of c. The model parameters are U = 1, S = 0
(S′ = 1/2), Q = 0.716 and k0 = 1.0. Only zpp is defined for c < ccr . The (non-integer) exponents
are discontinuous across the transition.
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In terms of the quantum numbers defined above, the total momentum of the system is
given by

P = 2π

L

∑
l

[
Nl(Dl + ϑl) + n+

l − n−
l

]
. (27)

Equations (25) and (27) define the mesoscopic corrections to the ground-state energy and
momentum of a two-component Luttinger liquid.

5. Correlation functions

We now calculate first the long-time large-distance asymptotics of the pair-charge-density
and Cooper-pair correlation functions, then we obtain the spin-density and spin-flip response
functions, and finally we briefly discuss the Aharonov–Bohm oscillation pattern.

For gapless one-dimensional systems (Luttinger liquids) the correlations fall off as power
laws of time and distance. The critical exponents follow from conformal field theory in
combination with the finite-size excitation spectrum. The conformal dimensions of a primary
field ϕQ̃, characterized by a set of quantum numbers Q̃, are obtained from equations (25)
and (27):

2>±
l =

[
1

2

∑
q

(ẑ−1)ql>Nq ±
∑

q

zlqDq

]2

+ 2n±
l . (28)

From an inspection of the discrete Bethe ansatz equations it follows that 2Du = >Np − >Nu

(mod 1) and 2Dp = >Nu (mod 1). The asymptotic form of a correlation function for the
operator ϕ(x, t) is [23–26]

〈ϕ(x, t)ϕ(0, 0)〉 =
∑
Q̃

B(Q̃) exp

[
−2ix

∑
l

plDl

] ∏
l

(x − ivlt)
−2>+

l (x + ivlt)
−2>−

l (29)

where the index Q̃ refers to the conformal fields contained in the operator ϕ, and pu = πnu

and pp = πnp are the Fermi momenta of the two bands. Here nl is the number of particles in
the band l.

The pair-density operator, defined by the Cooper-pair number operator np(x, t), does not
change the number of particles in either band, i.e. >Nu = >Np = 0, and hence Du and Dp are
integers. We have to consider the pair-density correlation function in the two regimes, c < ccr

and c > ccr . For c < ccr only the band of pairs is populated, so only the conformal dimensions

2>±
p = 2n±

p + z2
ppD2

p

play a role, and the leading terms of the pair-density correlation function are

〈np(x, t)np(0, 0)〉 = n2
p + A

x2 − v2
pt2

(x2 + v2
pt2)2

+ B2
cos(2ppx + ϕ2)

(x2 + v2
pt2)z2

pp

+ B4
cos(4ppx + ϕ4)

(x2 + v2
pt2)4z2

pp

+ · · ·

(30)

where np is the expectation value of the density operator, ϕ2 and ϕ4 are two phases, and A, B2

and B4 are amplitudes. The term with amplitude A corresponds to Dp = 0, n+
p = 1, n−

p = 0,
and n+

p = 0, n−
p = 1. The other two terms are oscillatory and arise from Dp = 1 and 2,

respectively, with n+
p = n−

p = 0, and represent a backward scattering of 2 and 4 times the
Fermi momentum.
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The situation changes drastically for c > ccr , where the two Dirac seas interfere. The
conformal dimensions for the pair density are now

2>±
u = 2n±

u + (zuuDu + zupDp)2 2>±
p = 2n±

p + (zpuDu + zppDp)2

and the leading asymptotic terms of the correlation function are

〈np(x, t)np(0, 0)〉 = n2
p + Ap

x2 − v2
pt2

(x2 + v2
pt2)2

+ Au

x2 − v2
ut

2

(x2 + v2
ut

2)2

+ B2p

cos(2ppx + ϕ2p)

(x2 + v2
pt2)z2

pp (x2 + v2
ut

2)z2
up

+ B2u

cos(2pux + ϕ2u)

(x2 + v2
pt2)z2

pu (x2 + v2
ut

2)z2
uu

+ B4p

cos(4ppx + ϕ4p)

(x2 + v2
pt2)4z2

pp (x2 + v2
ut

2)4z2
up

+ B4u

cos(4pux + ϕ4u)

(x2 + v2
pt2)4z2

pu (x2 + v2
ut

2)4z2
uu

+ C+
cos[2(pp + pu)x + ϕ+]

(x2 + v2
pt2)(zpp+zpu)2

(x2 + v2
ut

2)(zuu+zup)2

+ C−
cos[2(pp − pu)x + ϕ−]

(x2 + v2
pt2)(zpp−zpu)2

(x2 + v2
ut

2)(zuu−zup)2 + · · · . (31)

Charge-density waves now propagate with two different group velocities, vp and vu, and
oscillating terms with 2 and 4 times the Fermi momentum of each band, as well as sums and
differences of the Fermi momenta, appear. The amplitudes Au, B2u and B4u are expected to
be small for the pair-density correlation function. Note that the charge density for unpaired
electrons has the same quantum numbers as the pair density, so for c > ccr the general form
is again (31).

Of special interest is the equal-time correlation function. For t = 0 and suppressing the
phases ϕ we have for c < ccr

〈np(x)np(0)〉 = n2
p +

A

x2
+ B2

cos(2ppx)

xθ2p
+ · · · (32)

and for c > ccr

〈np(x)np(0)〉 = n2
p +

A

x2
+ B2p

cos(2ppx)

xθ2p
+ B2u

cos(2pux)

xθ2u

+ C+
cos[2(pp + pu)x]

xθp+u
+ C−

cos[2(pp − pu)x]

xθp−u
+ · · · . (33)

The critical exponents θ are shown in figure 4(B) as functions of c. Note that the dominant
term in all cases oscillates with 2pp, i.e. involves simple backward scattering across the Fermi
surface of the Cooper hard-core bosons.

The operator O†(x, t) = ψ
†
↑(x, t)ψ

†
↓(x, t) creates a Cooper pair at x and time t . It involves

>Np = 1 and >Nu = 0, and hence Dp is integer, while Du is a half-integer. For c < ccr we
obtain for the Cooper-pair correlation function

〈O†(x, t)O(0, 0)〉 = A

(x2 + v2
pt2)1/4z2

pp

+
∑
α=±

Bαe−2iαppx
∏
β=±

[x − iβvpt]−(zpp−αβ/2zpp)2
+ · · ·

(34)

where the three terms correspond to Dp equal to 0, +1 and −1, respectively. The leading term
is the one of amplitude A. For c > ccr , on the other hand, the two Fermi seas interfere and we
have (Dp = 0 and Du = ± 1

2 )

〈O†(x, t)O(0, 0)〉 =
∑
α=±

Aαe−iαpux
∏
β=±

[x − iβvpt]−
1
4 (zpu+αβzuu/det)2

× [x − iβvut]
− 1

4 (zuu−αβzpu/det)2
+ · · · (35)
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where ‘det’ is the determinant of the matrix of dressed charges. In the limit of an empty
unpaired electron band these two terms reduce to the first term in (34). Note that the addition
or removal of a Cooper pair shakes up the Dirac sea of unpaired electrons and long-wavelength
oscillations (pu is small) arise.

Again, the equal-time correlation function has a simpler form, i.e. 〈O†(x)O(0)〉 =
A/xωc + · · · for c < ccr and 〈O†(x)O(0)〉 = A cos(pux)/xωc + · · · for c > ccr . The leading
critical exponent ωc is displayed in figure 4(C) as a function of c. Note that the non-integer
exponents for all of the correlation functions are discontinuous across the transition. Typically
the correlations fall off faster with distance in the ferromagnetic two-Fermi-sea regime.

The spin-density operator is 1
2nu. Its quantum numbers are >Np = >Nu = 0, i.e. the

same ones as for the pair-density operator. The terms in principle allowed by symmetry in
the asymptote of the correlation function have then the same form as in equations (30) and
(31). However, for c < ccr there is no spin density at T = 0 and the correlation function is
identically zero. For c > ccr , on the other hand, the general form is (31) with 1

2nu replacing
np. Now the amplitudes Ap, B2p and B4p are expected to be small, but the exponents are the
same.

The spin-flip operator S+(x, t) = ψ
†
↑(x, t)ψ↓(x, t) destroys one Cooper pair (>Np = −1)

and creates two unpaired electrons (>Nu = 2). The backward-scattering quantum number
Dp is an integer and Du is a half-integer. The leading asymptotic terms correspond to
Dp = n±

p = n±
u = 0 and Du = ± 1

2 , i.e.

〈S+(x, t)S−(0, 0)〉 =
∑
α=±

Aαe−iαpux
∏
β=±

[x − iβvpt]−
1
4 (zpu−αβ(zuu+2zup)/det)2

× [x − iβvut]
− 1

4 (zuu+αβ(zpu+2zpp)/det)2
+ · · · . (36)

The function has a long-wavelength oscillation. The equal-time correlation function is

〈S+(x)S−(0)〉 = A cos(pux)/xωs

and the critical exponent ωs is displayed in figure 4(C) as a function of c.
Finally, we consider persistent currents of the Aharonov–Bohm type, which are induced

in response to a magnetic field flux φ threading the ring. The flux introduces the phase shifts
ϑq in equation (25). In the absence of excitations the mesoscopic correction to the ground-state
energy is given by [28]

>E =
∑

l

2πvl

Na

[(
zlu

{
φ

φ0

}
+ zlp

{
2φ

φ0

})2

− 1

12

]
(37)

where the curly brackets confine the phase to the interval |ϕ| < 0.5 (modulo an integer).
Here φ0 = hc/e is the elemental magnetic flux quantum and Cooper pairs acquire a phase
of 2φ/φ0 because they involve two electron charges. The persistent current is defined as
jc = −∂ >E/∂φ.

For c < ccr all electrons are paired in the ground state and

>E = (2πvp/Na)[z
2
pp{2φ/φ0}2 − 1/12].

As a function of φ the mesoscopic energy is continuous and piecewise parabolic with a
periodicity of φ0/2, and consequently the persistent current has a simple sawtooth pattern.
The charge stiffness or Drude weight is D = 2vpz2

pp/π .
For c > ccr , on the other hand, there are two Fermi seas coupling to the flux, so there

are two periods of oscillation, namely φ0 and φ0/2. The energy is no longer continuous and
jumps at φ0/4 and 3φ0/4 (and is periodic), due to the interplay of the two Fermi surfaces. The
discontinuities of the energy are mesoscopic, of the order of the Heisenberg uncertainty, and
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have been discussed previously in a different context, namely for the Heisenberg chain with
impurities [29]. The persistent current is the superposition of two oscillations of the sawtooth
form. The persistent current has δ-function-like singularities where the energy jumps. These
singularities can be interpreted as supercurrents, necessary to generate the discontinuities in
the energy. The discontinuities disappear at finite T or with impurity scattering, since this
suppresses the higher-order-harmonic content in the oscillations.

6. Conclusions

We have studied the critical behaviour of correlation functions at large distances and long
times across the critical point separating the spin-gapped and the gapless ferromagnetic phases
of the interacting 1D electron gas with a finite concentration of magnetic impurities. In the
ground state the system has two phases, namely a spin-gapped phase consisting of one Fermi
sea of hard-core bosons (Cooper-pair-like singlet bound states) and a gapless phase with two
Dirac seas, one corresponding to the singlet pairs and the other one representing unpaired
spin-polarized electrons.

We calculated the mesoscopic corrections to the ground-state energy for a finite system and
obtained the critical exponents for the pair-charge-density Green’s function, the Cooper-pair
correlation function, and the spin-density and spin-flip response functions. The pair-density
and Cooper-pair correlation functions are non-trivial in both phases. The critical exponents are
discontinuous at the transition. In the ferromagnetic phase the Cooper-pair response function
has a long-wavelength modulation that is proportional to the magnetization. The ground-state
spin correlation functions are zero in the gapped phase, but fall off with a power law in the
ferromagnetic phase.

The Aharonov–Bohm persistent-current oscillation pattern has also been studied. The
persistent current is a simple sawtooth in the gapped phase, while in the gapless phase the
interference of the two Fermi surfaces gives rise to a superposition of two sawtooth patterns
with different periodicities and mesoscopic discontinuities in the energy.

Our impurity model has restrictions imposed by the integrability, which requires pure
elastic scattering without reflection. As a consequence the impurity does not give rise to a
bound state inside the spin gap, which is an artifact of our impurity model and non-generic.
Furthermore, we have not considered the possibility of weak localization due to disorder [30].
In the electron gas with attractive U , the impurities effectively act similarly to a magnetic field,
closing the gap and polarizing the depaired electrons. In our model we have not included an
explicit interaction between the impurities.

On the other hand, a finite concentration of magnetic impurities introduced into a correlated
host without a spin gap, e.g. the supersymmetric t–J model, are antiferromagnetically cor-
related as experimentally found in some heavy-fermion compounds [20]. In this case the
spins can rearrange (absence of a gap) and form a magnetic singlet ground state. We have
also studied the possibility of antiferromagnetic correlations among the impurity spins in the
system with a spin gap [31]. For such a situation to occur, additional interactions, compatible
with the Bethe ansatz equations, have to be introduced.
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Göhmann F and Schulz H 1990 J. Phys.: Condens. Matter 2 3841

[16] Proetto C R, Aligia A A and Balseiro C A 1985 Phys. Lett. A 107 93
Aligia A A, Proetto C R and Balseiro C A 1985 Phys. Rev. B 31 6143
Proetto C R, Balseiro C A and Aligia A A 1985 Z. Phys. B 59 413

[17] Schlottmann P 1985 Z. Phys. B 59 391
[18] Schlottmann P 1989 Phys. Rep. 181 1
[19] Tsvelik A M and Wiegmann P B 1983 Adv. Phys. 32 453
[20] Schlottmann P and Zvyagin A A 1997 Phys. Rev. B 56 13 989

Schlottmann P 1998 Nucl. Phys. B 525 697
[21] Schlottmann P 1994 Phys. Rev. B 49 9202
[22] de Vega H J and Woynarovich F 1985 Nucl. Phys. B 251 439
[23] Bogoliubov N M and Korepin V E 1988 Mod. Phys. Lett. B 1 349

Bogoliubov N M and Korepin V E 1989 Int. J. Mod. Phys. B 3 427
[24] Belavin A A, Polyakov A M and Zamolodchikov A B 1984 Nucl. Phys. B 241 333
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